पर्यायी गणित: आधार 12 संख्यांचा परिचय आणि त्यांचा वापर

पर्यायी गणित: आधार 12 संख्यांचा परिचय आणि त्यांचा वापर गणित, एक सार्वत्रिक भाषा म्हणून, आपल्या सभोवतालच्या जगाचे वर्णन करण्यासाठी आणि समजून घेण्यासाठी अनादी काळापासून मानवतेद्वारे वापरली जात आहे. संपूर्ण इतिहासात, नवीन आव्हाने आणि शोधांना सामोरे जाण्यासाठी गणित विकसित झाले आहे, अनुकूल होत आहे आणि विस्तारत आहे. या लेखात आपण गणिताची एक कमी ज्ञात शाखा शोधू: वैकल्पिक गणित, विशेषत: बेस 12 अंक प्रणाली आणि त्याचा व्यावहारिक वापर यावर लक्ष केंद्रित करणे. या दृष्टिकोनाद्वारे, आम्ही गणितीय प्रणालींना विशिष्ट गरजा पूर्ण करण्यासाठी कसे जुळवून घेतले आणि सानुकूलित केले जाऊ शकते हे शोधण्यात सक्षम होऊ.

बेस 12 क्रमांकन: एक संक्षिप्त इतिहास

बेस 12 क्रमांकन, या नावाने देखील ओळखले जाते डुओडेसिमल क्रमांकन, त्याची मुळे विविध प्राचीन संस्कृतींमध्ये आहेत. ही प्रणाली मोजण्यासाठी (अंगठा वगळून) नकल्सच्या वापरातून उद्भवली आहे असे मानले जाते, एका बाजूला एकूण 12 युनिट्स देतात. संपूर्ण इतिहासात, विविध संस्कृतींनी ही प्रणाली वेगवेगळ्या प्रमाणात स्वीकारली आहे. सर्वोत्कृष्ट ज्ञातांपैकी बॅबिलोनियन आहेत, ज्यांनी बेस 60 मध्ये लैंगिकता प्रणाली वापरली, परंतु त्यांची संख्या 12 च्या उपसमूहांमध्ये विभागली; आणि प्राचीन इजिप्शियन, ज्यांनी वेळ मोजण्यासाठी डुओडेसिमल प्रणाली देखील वापरली.

डुओडेसिमल सिस्टम: संख्या आणि शब्द

बेस 12 संख्या प्रणालीमध्ये, संख्या दर्शवण्यासाठी 12 भिन्न चिन्हे वापरली जातात: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (10), आणि B (11). खाली बेस 12 संख्यांची यादी आणि स्पॅनिशमध्ये त्यांच्या समतुल्य, कंसातील ध्वन्यात्मकता समाविष्ट आहे:

  • ० - शून्य (/'θe.ro/)
  • १ - एक (/'u.no/)
  • २ - दोन (/दोन/)
  • ३ - तीन (/'तीन/)
  • ४ - चार (/'kwat.ro/)
  • ५ - पाच (/'θin.ko/)
  • 6 - सहा (/sejs/)
  • ७ - सात (/'sje.te/)
  • ८ - आठ (/'o.tʃo/)
  • ९ - नऊ (/'nwe.βe/)
  • अ - दहा (/'djeθ/)
  • B – अकरा (/'on.θe/)

ड्युओडेसिमल अंकांचे व्यावहारिक अनुप्रयोग

ड्युओडेसिमल प्रणालीचे काही फायदे आहेत, विशेषत: जेव्हा ते कार्यप्रदर्शनासाठी येते अंकगणित गणना आणि विभागणी सोपी करा. 12 ही अत्यंत संमिश्र संख्या असल्याने, तिच्यापेक्षा कमी असलेल्या संख्येपेक्षा (1, 2, 3, 4, 6, आणि 12) जास्त विभाजक आहेत. यामुळे अपूर्णांक सोपे करणे सोपे होते.

ड्युओडेसिमल प्रणालीच्या व्यावहारिक अनुप्रयोगाचे उदाहरण मध्ये आढळू शकते वेळ मोजमाप. आपल्याला माहित आहे की, एक दिवस 24 तासांमध्ये विभागला जातो, प्रत्येक तास 60 मिनिटांमध्ये आणि प्रत्येक मिनिट 60 सेकंदात विभागला जातो. हे विभाजन पारंपारिक दशांश पेक्षा ड्युओडेसिमल प्रणालीमध्ये हाताळणे सोपे आहे.

शिक्षण आणि संशोधनातील आधार 12

जरी बहुतेक आधुनिक संस्कृतींमध्ये दशांश प्रणाली प्रबळ असली तरी, पर्यायी संख्या प्रणाली म्हणून बेस 12 मध्ये स्वारस्य कायम आहे. काही शिक्षक आणि शिक्षक, तसेच गणित आणि इतिहासातील संशोधक, अशा प्रणालीची क्षमता ओळखतात आणि पारंपारिक गणिताला पूरक म्हणून तिच्या शिकवणीला प्रोत्साहन देतात. हे विद्यार्थ्यांना संख्या आणि ऑपरेशन्सची सखोल आणि अधिक सूक्ष्म समज विकसित करण्यास तसेच गणिताच्या साधनांमधील विविधतेच्या मूल्याची प्रशंसा करण्यास मदत करू शकते.

साहित्य आणि पॉप संस्कृतीत डुओडेसिमल संख्या

विशेष म्हणजे, बेस 12 नंबरिंग सिस्टमने साहित्य आणि पॉप कल्चरमध्येही आपला ठसा उमटवला आहे. विज्ञान कथा आणि कल्पनारम्य लेखक, ज्यात JRR टॉल्कीन आणि उर्सुला के. ले गुइन सारख्या घरगुती नावांचा समावेश आहे, त्यांनी वैकल्पिक जग आणि समृद्ध भाषा तयार करण्यासाठी त्यांच्या काल्पनिक कृतींमध्ये प्रणाली वापरली आहे.

थोडक्यात, बेस 12 क्रमांकन प्रणाली गणितावर एक वेगळा आणि अनेकदा अधिक व्यावहारिक दृष्टीकोन देते आणि आपण कल्पना व्यक्त करण्यासाठी आणि समस्यांचे निराकरण करण्यासाठी ते कसे वापरू शकतो. या पर्यायावर एक नजर टाकून, आम्ही केवळ गणिताची आमची समज वाढवत नाही तर सर्वसाधारणपणे संख्या प्रणालीची क्षमता वाढवतो.

स्मरण शाक्तीची एक टिप्पणी